# List of Algebra Formulas

Algebra is an integral part of Mathematics. It uses symbols and letters to represent quantities and numbers in equations and formulae. The two basic types of algebra are Elementary algebra and Modern algebra. To study algebra students need to have a clear understanding of various formulas, terms and concepts. Learning these formulas and applying them can help them attain a better score in mathematics.

We believe that having access to the list of algebra formulas for class 10 all in a single page can be really beneficial for the students. Therefore, we have compiled this list and presented it to you through his website. Check this out and download them for reference. Also, make sure to navigate to the other formulas.

## Algebraic Identities For Class 10

(a+b)2$\mathbf{(a+b)^{2}}$ =a2+2ab+b2$=a^2+2ab+b^{2}$
(ab)2$\mathbf{(a-b)^{2}}$ =a22ab+b2$=a^{2}-2ab+b^{2}$
(a+b)(ab)$\mathbf{\left (a + b \right ) \left (a – b \right ) }$ =a2b2$= a^{2} – b^{2}$
(x+a)(x+b)$\mathbf{ \left (x + a \right )\left (x + b \right ) }$ =x2+(a+b)x+ab$= x^{2} + \left (a + b \right )x + ab$
(x+a)(xb)$\mathbf{\left (x + a \right )\left (x – b \right ) }$ =x2+(ab)xab$= x^{2} + \left (a – b \right )x – ab$
(xa)(x+b)$\mathbf{\left (x – a \right )\left (x + b \right )}$ =x2+(ba)xab$= x^{2} + \left (b – a \right )x – ab$
(xa)(xb)$\mathbf{\left (x – a \right )\left (x – b \right ) }$ =x2(a+b)x+ab$= x^{2} – \left (a + b \right )x + ab$
(a+b)3$\mathbf{\left (a + b \right )^{3}}$ =a3+b3+3ab(a+b)$= a^{3} + b^{3} + 3ab\left (a + b \right )$
(ab)3$\mathbf{\left (a – b \right )^{3} }$ =a3b33ab(ab)$= a^{3} – b^{3} – 3ab\left (a – b \right )$
(x+y+z)2$\mathbf{(x + y + z)^{2}}$ =x2+y2+z2+2xy+2yz+2xz$= x^{2} + y^{2} + z^{2} + 2xy + 2yz + 2xz$
(x+yz)2$\mathbf{(x + y – z)^{2}}$ =x2+y2+z2+2xy2yz2xz$= x^{2} + y^{2} + z^{2} + 2xy – 2yz – 2xz$
(xy+z)2$\mathbf{(x – y + z)^{2} }$ =x2+y2+z22xy2yz+2xz$= x^{2} + y^{2} + z^{2} – 2xy – 2yz + 2xz$
(xyz)2$\mathbf{(x – y – z)^{2}}$ =x2+y2+z22xy+2yz2xz$= x^{2} + y^{2} + z^{2} – 2xy + 2yz – 2xz$
x3+y3+z33xyz$\mathbf{x^{3} + y^{3} + z^{3} – 3xyz }$ =(x+y+z)(x2+y2+z2xyyzxz)$= (x + y + z)(x^{2} + y^{2} + z^{2} – xy – yz -xz)$
x2+y2$\mathbf{x^{2} + y^{2}}$ =12[(x+y)2+(xy)2]$= \frac{1}{2} \left [(x + y)^{2} + (x – y)^{2} \right ]$
(x+a)(x+b)(x+c)$\mathbf{(x + a) (x + b) (x + c) }$ =x3+(a+b+c)x2+(ab+bc+ca)x+abc$= x^{3} + (a + b +c)x^{2} + (ab + bc + ca)x + abc$
x3+y3$\mathbf{x^{3} + y^{3}}$ =(x+y)(x2xy+y2)$= (x + y) (x^{2} – xy + y^{2})$
x3y3$\mathbf{x^{3} – y^{3}}$ =(xy)(x2+xy+y2)$= (x – y) (x^{2} + xy + y^{2})$
x2+y2+z2xyyzzx$\mathbf{x^{2} + y^{2} + z^{2} -xy – yz – zx }$ =12[(xy)2+(yz)2+(zx)2]$= \frac{1}{2} [(x-y)^{2} + (y-z)^{2} + (z-x)^{2}]$

## Linear Equation in Two Variables

a1x+b1y+c1$\mathbf{a_{1}x + b_{1}y + c_{1} }$ =0$= 0$
a2x+b2y+c2$\mathbf{a_{2}x+ b_{2}y + c_{2}}$ =0$= 0$

Other formulas